Planar graphs without 3-, 7-, and 8-cycles are 3-choosable

نویسندگان

  • Zdenek Dvorak
  • Bernard Lidický
  • Riste Skrekovski
چکیده

A graph G is k-choosable if every vertex of G can be properly colored whenever every vertex has a list of at least k available colors. Grötzsch’s theorem states that every planar triangle-free graph is 3-colorable. However, Voigt [13] gave an example of such a graph that is not 3-choosable, thus Grötzsch’s theorem does not generalize naturally to choosability. We prove that every planar triangle-free graph without 7and 8-cycles is 3-choosable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3-choosability of Triangle-free Planar Graphs with Constraint on 4-cycles

A graph is k-choosable if it can be colored whenever every vertex has a list of at least k available colors. A theorem by Grötzsch [2] asserts that every triangle-free planar graph is 3-colorable. On the other hand Voigt [10] gave such a graph which is not 3-choosable. We prove that every triangle-free planar graph such that 4-cycles do not share edges with other 4and 5-cycles is 3-choosable. T...

متن کامل

3-Choosability of Triangle-Free Planar Graphs with Constraints on 4-Cycles

A graph is k-choosable if it can be colored whenever every vertex has a list of at least k available colors. A theorem by Grötzsch [2] asserts that every triangle-free planar graph is 3-colorable. On the other hand Voigt [10] found such a graph which is not 3-choosable. We prove that if a triangle-free planar graph is not 3-choosable, then it contains a 4-cycle that intersects another 4or 5-cyc...

متن کامل

On 3-choosability of plane graphs having no 3-, 6-, 7- and 8-cycles

A graph is k-choosable if it can be colored whenever every vertex has a list of available colors of size at least k. It is a generalization of graph coloring where all vertices do not have the same available colors. We show that every triangle-free plane graph without 6-, 7-, and 8-cycles is 3-choosable.

متن کامل

Planar graphs without 4, 5 and 8-cycles are acyclically 4-choosable

In this paper, we prove that planar graphs without 4, 5 and 8-cycles are acyclically 4-choosable.

متن کامل

On Choosability with Separation of Planar Graphs with Forbidden Cycles

We study choosability with separation which is a constrained version of list coloring of graphs. A (k, d)-list assignment L of a graph G is a function that assigns to each vertex v a list L(v) of at least k colors and for any adjacent pair xy, the lists L(x) and L(y) share at most d colors. A graph G is (k, d)-choosable if there exists an L-coloring of G for every (k, d)-list assignment L. This...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 309  شماره 

صفحات  -

تاریخ انتشار 2009